Building and running NPB-BT-MZ-MPI on Cori

Christian Feld
Jülich Supercomputing Centre

What is the NPB-BT-MZ-MPI?

- A benchmark from the NAS parallel benchmarks suite http://www.nas.nasa.gov/Software/NPB
- MPI version
- Implementation in Fortran
- Solves multiple, independent systems of block tridiagonal (BT) equations
- Represents workloads similar to many flow solver codes (3D Navier-Stokes equations)
- Probably not much unused optimization potential
- We will use this application in all exercises during this workshop.

Properties of NPB-BT-MZ-MPI

- The solution is done for multiple zones (MZ), in a repeated time-step loop
 - After each time-step, the zones have to exchange boundary values
 - Fine-grained parallelism within a zone
 - Coarse-grained parallelism between zones
 - Zones are not all equally sized and need to be distributed in a balanced way
- A larger problem size adds more zones
- Exploits multi-level parallelism
 - Hybrid (OpenMP + MPI) implementation
- Suitable testing application for a wide range of tools and analysis types!

First step: Switch to latest Intel environment

Use the default Intel environment

```
% module list
Currently Loaded Modulefiles:
1) modules/3.2.6.7
                                     13) xpmem/0.1-4.5
 2) nsa/1.2.0
                                      14) iob/1.5.5-3.58
 3) modules/3.2.10.4
                                      15) dvs/2.5 0.9.0-2.155
 4) intel/16.0.3.210.nersc
                                      16) alps/6.1.3-17.12
                                      17) rca/1.0.0-6.21
 5) craype-network-aries
  6) craype/2.5.5
                                      18) atp/2.0.2
 7) cray-libsci/16.06.1
                                      19) PrgEnv-intel/6.0.3
  8) udreg/2.3.2-4.6
                                      20) craype-haswell
  9) ugni/6.0.12-2.1
                                      21) cray-shmem/7.4.0
10) pmi/5.0.10-1.0000.11050.0.0.ari
                                      22) cray-mpich/7.4.0
11) dmapp/7.1.0-12.37
                                      23) darshan/3.0.1
12) gni-headers/5.0.7-3.1
```


Second step: Building the benchmark

Copy tutorial sources to your work directory:

```
% cd $SCRATCH
% module load training
% tar xzvf $EXAMPLES/NPB3.3-MZ-MPI.tar.gz
% cd NPB-3.3-MZ-MPI
% ls -F
BT-MZ/ Makefile README.install SP-MZ/ common/ jobscript/
LU-MZ/ README README.tutorial bin/ config/ sys/
```


Building an NPB-MZ-MPI benchmark

```
% make
       NAS PARALLEL BENCHMARKS 3.3
       MPI+OpenMP Multi-Zone Versions
 To make a NAS multi-zone benchmark type
       make <benchmark-name> CLASS=<class> NPROCS=<nprocs>
 where <benchmark-name> is "bt-mz", "lu-mz", or "sp-mz"
                  is "S", "W", "A" through "F"
      <class>
      <nprocs>
                 is number of processes
 [...]
       *******************
* Custom build configuration is specified in config/make.def
* Suggested tutorial exercise configuration for Bridges:
       make bt-mz CLASS=B NPROCS=8
   ******************
```

Type "make" for instructions

Building an NPB-MZ-MPI benchmark

```
% make bt-mz CLASS=B NPROCS=8
make[1]: Entering directory `BT-MZ'
make[2]: Entering directory `sys'
cc -o setparams setparams.c -lm
make[2]: Leaving directory `sys'
../sys/setparams bt-mz 8 B
make[2]: Entering directory `../BT-MZ'
ftn -c -O3 -openmp bt.f
ftn -c -O3 -openmp mpi setup.f
cd ../common; ftn -mmic -c -O3 -openmp
                                           print results.f
cd ../common; ftn -mmic -c -O3 -openmp
                                           timers f
ftn -03 -openmp -o ../bin/bt-mz B.30 bt.o
initialize.o exact solution.o exact rhs.o set constants.o adi.o
rhs.o zone setup.o x solve.o y solve.o exch qbc.o solve subs.o
 z solve.o add.o error.o verify.o mpi setup.o ../common/print results.o
 ../common/timers.o
make[2]: Leaving directory `BT-MZ'
Built executable ../bin/bt-mz B.8
make[1]: Leaving directory `BT-MZ'
```

- Specify the benchmark configuration
 - benchmark name: bt-mz, lu-mz, sp-mz
 - the number of MPI processes: NPROCS=8
 - the benchmark class (S, W, A, B, C, D, E): CLASS=B

Shortcut: % make suite

Third step: Run the application

Change to bin/ directory and copy job script from ../jobscript/cori-p1

```
% cd bin
% cp ../jobscript/cori-p1/reference.sbatch.B.8 .
% less reference.sbatch.B.8
```

Submit the job

```
% sbatch reference.sbatch.B.8
```


Useful commands

Check your personal job queue:

```
% squeue -u $USER
```

Cancel a job:

```
% scancel <job id>
```

NPB-MZ-MPI / BT reference execution

```
% less ref-B.8-<job id>.out
NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark
Number of zones:
Iterations: 200 dt: 0.000300
Number of active processes:
Use the default load factors with threads
Total number of threads: 32 ( 4.0 threads/process)
Calculated speedup =
                     31.52
Time step
Time step 20
 [...]
Time step 180
Time step 200
Verification Successful
BT-MZ Benchmark Completed.
Time in seconds = 5.36
```

- Copy jobscript and launch as a hybrid MPI+OpenMP application
- Reproducible? CPU frequency constant? Turboboost? Pinning?

Hint: save the benchmark output (or note the run time) to be able to refer to it later

Done!

You have successfully built and run the benchmark.

